Product Description
Timing belt pulley
Matched for the MC11/13 ENGINE and also suited for D20/26(D2066LF40) |
Why Powdered Metals?
Significant cost savings.
Create complex or unique shapes.
No or minimal waste during production.
High quality finished products.
Strength of materials
Production process of powder metallurgy
Powder mixing – Forming – Sintering – Oil impregnation – Sizing -Ultrasonic cleaning – Steam oxidation – Oil impregnation – Final inspection – Packing
Company Profile
JINGSHI established in 2007
Manufacturer & Exporter
Exacting in producing powder metallurgy gears and parts
Passed ISO/TS16949 Quality Certificate
Advanced Equipment
Numbers senior R & D engineers and Skilled operators
Precise Examination Instruments.
Strict Quality Control
With the “More diversity, More superior, More professional ” business purposes, we are committed to establish long-term friendship and CHINAMFG relationship with domestic and international customers to create a bright future .
Please Send us your 2D or 3D drawings to start our cooperation!
Certification: | TS16949 |
---|---|
Standard Component: | Standard Component |
Technics: | Sintered |
Material: | Iron |
Type: | Tensioner Pulley |
Delivery Time: | 10-25days |
Samples: |
US$ 2/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do V pulleys differ from other types of pulleys?
V pulleys, also known as V-belt pulleys or sheaves, have distinct characteristics that set them apart from other types of pulleys. Here’s an explanation of how V pulleys differ from other pulleys:
1. Groove Shape:
The most notable difference between V pulleys and other pulleys is the shape of the groove on their outer circumference. V pulleys have a V-shaped groove, which is specifically designed to accommodate V-belts with a trapezoidal cross-section. This groove shape provides a wedging action that enhances the grip between the pulley and the belt, reducing the likelihood of slippage.
2. Friction-Based Power Transmission:
V pulleys utilize a friction-based power transmission system. The V-belt wraps around the V pulley, creating a frictional contact between the belt and the groove. This friction allows for the transfer of rotational motion and torque between the driving source and the driven component. In contrast, other types of pulleys, such as flat pulleys or timing pulleys, may employ different mechanisms, such as flat belts or toothed belts, for power transmission.
3. V-Belt Compatibility:
V pulleys are specifically designed to work in conjunction with V-belts. V-belts are flexible rubber belts with a trapezoidal cross-section that match the V-shaped groove on the pulley. The shape and dimensions of the V-belt are precisely engineered to provide optimal contact and grip on the V pulley. This compatibility between the V pulley and the V-belt ensures efficient power transmission and reduces the risk of slippage.
4. Torque Transmission:
V pulleys are particularly suitable for high torque transmission. The wedging action created by the V-shaped groove and the corresponding shape of the V-belt allows for efficient power transfer even under heavy loads or during sudden changes in speed or direction. The design of V pulleys enables them to transmit higher levels of torque compared to some other types of pulleys.
5. Speed Variation:
Another distinctive feature of V pulleys is the ability to achieve speed variation in power transmission systems. By changing the diameter of the V pulley, different speed ratios can be achieved between the driving source and the driven component. This flexibility in speed control allows for proper matching of operational requirements and efficient power transmission.
6. Damping Effect:
The flexibility of V-belts and the slight elasticity of the rubber material used in V-belts provide a damping effect in V pulley systems. This helps absorb vibrations and shocks in the mechanical system, contributing to smoother operation, reduced noise, and increased component longevity.
7. Common Applications:
V pulleys are commonly used in various applications, including automotive systems, industrial machinery, HVAC systems, and power transmission systems in appliances. They are especially prevalent in systems where high torque transmission, speed variation, and reliable power transmission are required.
By understanding the distinctive features of V pulleys, engineers and designers can select the appropriate pulley type for specific applications, considering factors such as power requirements, torque transmission, speed control, and belt compatibility.
editor by CX
2023-09-19